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The Construction of Shell Theories with
Fluid Loading to Approximate Scattering from
Submerged Bounded Objects via Techniques
in Differential Geometry

Cleon E. Dean and MichatJ F. Werby
Naval Oceanographic and Atmospheric Research Laboratory
Numerical Modeling Division
Stennis Space Center, Mississippi 39529-5004

Abstract: One can predict sound scattering from fluid loaded elastic shells based on exact
elastodynamic theory provided the shell is a sphere or an infinite cylinder or some other
geometry for which the elastodynamic equations are separable. Problems arise for more
general shapes with only limited success for spheroids and cylinders with hemispherical
end caps using the Extended Boundary Condition (EBC) method of Waterman. Both
Radlinsky and the Varadans have employed a marriage of the EBC method with shell
theories with some progress being made in the description of the scattering event. With
this in mind, our objective is to extend the progress made by the above researchers by
employing more physical shell theories. It is usual to construct shell theories via use of
geometrical constructions, or by use of variational principles. In this study we explore the
use of principles from differential geometry to construct appropriate theories that include
translational motion and rotary inertia, as well as effects due to fluid loading. Some
common thin shell theories which are employed for spherical elastic shells are deduced
from these general terms and are compared to exact theory for verification as well as a test
of limitations.

1. INTRODUCTION

We use the standard assumptions of shell theory as formulated by A. E. H. Love (Love, 1944) and
which are as follows: (1) The thickness of a shell is small compared with the smallest radius of
curvature of the shell; (2) The displacement is small in comparison with the shell thickness; (3) The
transverse normal stress acting on planes parallel to the shell middle surface is negligible; (4)
Fibers of the shell normal to the middle surface remain so after deformation and are themselves not
subject to elongation. These assumptions are used in the de~nlopment of a shell theory for an
elastic spherical shell. The objective here is to build shell theories which produce results consistent
with the lowest order Lamb modal vibrations, namely the symmetric and antisymmetric modes.
Shell theories for infinite cylinders in free space agree reasonably well with exact theory for the
lowest two modes. In particular, the symmetric or dilatational mode is easily accounted for by the
simplest shell theory; i.e., a membrane theory. Added sophistication does not appear to alter the
general results for the symmetric mode. On the other hand, a membrane theory is completely
inadequate to describe the antisymmetric or flexural modes. The inclusion of rotary inertia
accounts for the lowest order free space flexural mode but gives results which rapidly depart from
the exact calculation with increasing mode number and diverge to infinity for large values of size
parameter, ka, instead of asymptoting to the Rayleigh phase velocity, as expected. Added
complication occurs when one incorporates fluid loading in the exact theory; one first of all does
not observe the flexural vibrations until one reaches coincidence frequency. Secondly, there are
narrow, well defined water-borne waves analogous to Stoneley waves on a flat plate with fluid
loading on one side and a vacuum on the other. Ordinary shell theories yield (even) fourth order
resonance equations with real resonance frequencies and no odd order frequency terms. Such an
equation yields two real resonance frequency roots and does not suppress the lower order flexural
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modes; i.e.. the subcoincidence antisymmetric modes. By employing complex specific acoustic
impedances for the fluid loaded shell, we are able to obtain a fourth order resonant frequency
condition with odd order terms and complex frequency roots. Our condition allows for
suppression of the lower order flexural modes by damping and may also yield additional roots that
correspond to water-borne waves. Although our current results are not completely satisfactory,
we feel we have taken a step in the right direction since the new expressions allow for two
additional roots in accord with the observation of water-borne waves and for the suppression of the
lower order flexural or antisymmetric waves through a damping mechanism. We briefly outline
our development below.

2. DERIVATION OF EQUATIONS OF MOTION

In spherical shells membrane stresses (proportional to 03) predominate over flexural stresses

(proportional to [3) where
I h3= 4i5 a (2.1)

We differ from the standard derivation for the sphere (Junger and Feit, 1986) by retaining all terms

of order f32 in both the kinetic and potential energy parts of the Lagrangian and by considering the
resonance frequencies for the fluid loaded case to be complex. We note that this level of
approximation will allow us to include the effects of rotary inertia in our shell

theory, as well as damping by fluid loading. The parameter /3 itself is proportional to the radius of
gyration of a differential element of the shell and arises from integration through the thickness of
the shell in a radial direction. We will use an implicit harmonic time variation of the form

exp(-iwot). We begin our derivation by considering a u,v,w axis system on the middle surface of

a spherical shell of radius a (measured to mid-shell) with thickness h, as shown in Fig. 1.

2.1 Lagrangian Variational Analysis

Our Lagrangian, L, is
L = T- V + W, (2.2)

where T is the kinetic energy, V is the potential energy, and W is the work due to the pressure at
the surface. The kinetic energy is given by

T f (iJ,,,u; + H)(a +x) 2 sin edxdOdo, (2.3)

where the surface displacements are taken to be linear:

(I =(i+ x)ii --- (2.4)
a a dO"

and

S= w. (2.5)

The motion of the spherical shell is axisymmetric since the sound field is torsionless. Thus there is
no motion in the v-direction. Substitution of Eqs. (2.4) and (2.5) into Eq. (2.3), after integration

over x and 0,
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, . 5 L3 24 h5 h3 .'T = r'o, sin [(8-"a + -"+ ha2)i - 2(8-T 2+•-u•f

h5  . 3 h v2 h3

+( -2 -)- ) - + ha' )sw1dO, (2.6)
80a 12 TO 12

or, in terms of P3,

T = Ypha2Jf[(l.8fl4 + 6#' + 1)4i2 -(3.6fl4 + 6/]2

+(1.8f4 +#2)(.•)I +(#1I + l)2]sinodq, (2.7)

where the first and last terms in square brackets in Eq. (2.7) ame associated with linear translational
kinetic energies and the middle two terms are associated with rotational kinetic energies of an
element of the shell.

The potential energy of the shell is

1 rz r2z rh'2  
.V = x J 0 J-h/2 (rreee E + oe,, )(x + a)2 sin Gdxdedo, (2.8)

where the nonvanishing components of the strain are

E" t + + " u _2), (2.9)

and

e,,=-(cotOu+w)+X Coto U--w (2.10)
a a'•- -- )

and where the nonzero stress components are

EO'• = E _- (E, + rE 00), (2.11)

and

Ea,,* = i_-- 2 #0, + veM), (2.12)

where E is Young's modulus. By substitution the potential energy becomes
lff29rh/2 [ E 1 ( xdu x w W

V= I 0 h1 V2 )2 [a1 ---- + 2
2 J-'O h -v" (x+a) ( P a d9 a do2

+(cot 0[(1 + X)u - X0 +W
Sx--I + wj 2

a ad

ox+x x9W xdu xdww UI
+2-vieot a0+) -a + W)[( a + dadO2 + w] (x + a)2sin OdxdO (2.13)

"....... ........
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which after integration is
V= E za u du

-- J ((w +-TO)' + (w + ucot o) 2 + 2v(W +7)(w + ucot 0)
Vý
d-v"' dO d dOdo

+P d [ '0' 2w cot2 O(u--) +2vcotO(u- )(--w -d)}sinOdO. (2.14)

Terms in the potential energy proportional to P2 are due to bending stresses.

And finally, the work done by the pressure of the surrounding fluid on the spherical shell is given
by

W = 2ra' JpowsinOdO, (2.15)

where p. is the pressure at the surface.

2.2 The Lagrangian Density and Its Equations of Motion

Integration along the polar angle 0 is intrinsic to the problem, therefore we must turn to a
Lagrangian density formulation to solve for the equations of motion. Our Lagrangian density is
just

L = xpha2[(l + 6P' + 1.68f')li2 _ (6p2 + 3.6 34)ui- + (pl + 1.8 4)(-•-)2

do do
~ ,r~h du2  d

+(I )]si O-l-v{(w + u)O +(w+ucotO) 2 +2v(w+-)(w+ucotO)

,,du div 2  2 4 dw didu d'W+p [(- F) + cot' O(u_._-)2 +2vcotO(u_--)(- - .)llsi
ddT o To d0To

+2ra2 p.wsinO, (2.16)

with corresponding differential equations

dL d dL d dL
0 dL du 0  d du (2.17)du dO du, dt du,'

and

dL dJL__ddJL d2  dL d2 dL
0= --- 2.8

odw dO dLw dt A, d'dt w, dO2 dL (2.18)
where subscripts denote differentiation of the variable with respect to the subscript.

By substitution of Eqs. (2.17) and (2.18) into (2.16) we obtain
0=Ip a±u+ct. - ( + CO O)IW w _2 p2 Cot0 w

1 d o t ( d d cotOd- (2.19)

+[(I+ v)+ 0(v+cot' 0)]±- !![(1.s8I3 +6P- + 1 id d3W

and

____ ____ ____ ___ ____ ____ ___ ____ ____V.
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(1- v2)a 2  d3lu 2 d2u -+ + Ou
"Pa Eh /3fl -+2/3 cot-0--[(l+v)(l+ )+/3cot"0)]-

Ehdldo, dO
+cot 0f(2 - v+cot2 0)/32 -(1 + v)]u _ 'p•dW -2#2 Cot ••d3w

"v)Iu-/w2  -2/'ot-

+#3I(l+ v+cot2 8)-2W-/32 cot0(2 - v+cot 2 0) 9 -2(1+ v)w
dO' dO

a+--[-( 1.803 +32) du - (1.8#3' + d#1)cot 2U

dc2 OdT d/2) r'~
,. Ow d, 3 w d~w

+(1.8/3' +3p2)dw +(L.8/34 +32) -- , cot -(/32 + 1)--d-t. (2.20)
ded2dedt2 dt2

These differential equations of motion (2.19) and (2.20) have solutions of the form

. - rW2)"2 d , (2.21)

and

W07)= XWP. (17), (2.22)

where i= cos 0 and P, (q1) are the Legendre polynomials of the first kind of order n. When the
differential equations of motion(2.9) and(2.2o)are expanded in terms of Eqs.(2.2 1) and(2.22), we
obtain a set of linear equations in terms of U, and W., whose determinant must vanish. We shall
consider two cases: with and without fluid loading.

2.3 Vacuum Case

The simpler case is that when the spherical shell is surrounded by a vacuum such that there is no

damping. In this case, the pressure at the surface vanishes: p. = 0. The set of linear equations the
expansion coefficients must satisfy are

0 = [•22(1 + 6/32 + 1.83')-(1 ++32)c1U+ [Q'f2(3/32 + 1.83') -/32I + v)8W,, (2.23)
and

0 = -. [(o - 3)/3
2 - 1.8/3' + 1+ v]Un + [12 (1 + 23 2 + 1.8/3') -2(1+ v)-/321CA,]W., (2.24)

where = o.a /cp, c = v+ A, -1, and A• = n(n+ l). In order for Eqs. (2.23) and(2.24)to be
satisfied simultaneously with a non-trivial solution the determinant of the system must vanish:

0 =04 ( I + 6/32 + 1.8/3')(1 + 2/32 + 1.83')
+0l21(33 2 + 1.8/3')An[(1- 3).g2 - 1.83' + 1 + v]

-[2(1+ V) + 3 2 K)( l+ 632 + 1.8/3') -(1 +/32),)(1 +232 + 1.8#3')

+(I +/32)42(1 + V) + 32 cA.I-_ A.[(K -3) 3 2 -1.8/3' + 1+ v](J32 c+ 1+ v). (2.25)
Since there are no damping terms, the shell vibrates theoretically forever. Thus, the normalized
frequency 0 can be taken to be real. Equation(2.25)is quadratic in fC2, thus we expect two real
roots tO(2.25) and thus two modes for the motion of the shell. They are the symmetric and
antisymmetric modes.
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2.4 Fluid Loaded Case

For the fluid loaded case, we must consider a modal expansion of the surface pressure in terms of

the specific acoustic impedance z.. In its most general form this is

p(a,e,o) = X zý -WP., (cose)cosmo, (2.26)

where

Z' = ipc h,(ka) (2.27)
h'(ka)

The specific acoustic impedance z. can be split into real and imaginary parts:

z' =r,,-iwm,,, (2.28)
where

S= p e (ka) (2.29)

and

in PC (ih,(ka) (2.30)

h)IT,(Za) J
For the case we are considering of axisymmetric motion, the surface pressure is given by

p. (9) = - Wz ,P, (cos 0), (2.31)
n=O

or

pa(0) = -X(-itoWr, - o2W,,m)P,,(cos0). (2.32)

Use of Eq (2.32) in our set of differential equations of motion (2. 19) and (2.20)yields the following set
of linear equations for the expansion coefficients in the case of a fluid loaded spherical shell:

0 =[j 2 (1 +6#32 + 1.8/#)-(l +I 2)KIU, +[(Q2(3132 +l.83 4)-/3 2 iC-(l+ v)IW,. (2.33)

and

0 = -A•[(K - 3)P32 - 1.8/i4 + I + vJU.

+[W2(I + a + 2p2 + 1.8f3l) - 2(l + v) + Qy - fVPj14,]W, (2.34)
where

a= (2.35)

ph
and
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a ra r --- (2.36)
h p,c"

Again the determinant of Eqs. (2.33)and(2.34)must vanish. However, in this instance the value of
Q must be taken to be complex; the resonances have a width that depends on the damping. The
result of setting this determinant to zero is

0 = Q4 (1 + 6' + 1.8j')(l + a + 2/32 + 1.8,0')
+(l 3iy(l + 6#12 + 1.8p4')

+0'[(3#2 + I.8/3' )A,[(Kc- 3)P' - 1.8/1' + 1 + xi
-[2(1 + v)+,832 &A(I + 6-2 + 1.8/fl) -(I +/3-2 )K(l + a +2/32 + 1.8/3'))

+q{-iy(l +11 2)icl
+(1 +/32) x12(1 + v) +/8 3•A.2  I -Aý [(-K- 3)/32 

- 1.8#'4 + I + v](p 2 x- + I + v). (2.37)

Equation(2.37) has four complex roots. From work with an exact modal solution to the problem,
we expect two roots to be associated with the symmetric and antisymmetric modes of the shell.
We expect the other two roots to be associated with a water-home pseudo-Stoneley wave.

3. CONCLUSIONS

The next step is to plot the roots of Eqs. (2.25)and(2.37) to compare the resonances predicted by
these models with those given by exact modal expansion solutions. By suppressing a and y, the
model associated with Eq.(2.37) reverts to the vacuum case model associated with Eq.t2.25).
Similarly suppression of factors of /3 in Eq. (2.25)will result in a reversion to a previously derived
solution (Junger and Feit, 1986). We may then rank the three different models according to their
degree of physicality and compare their results for various relative shell thicknesses against each
other and against the exact results of the modal expansion model. We may also consider the
limitations of each of the models including the exact solution, as well as those of shell models in
general.

By setting the values of a and y in Eq.(2.37) to zero, we revert the shell theory model to one

without fluid loading. Similarly, by setting P3 to zero as well, the model reverts to a membrane
model. These models, fluid loaded, vacuo case, and membrane, are successively less physically
sophisticated and give successively less good comparison with exact (modal expansion) results.
Starting with the least sophisticated model, we see in Fig. 2 thick spherical steel shell dilatational
(symmetric) and flexural (antisymmetric) mode resonances calculated by the membrane model.
Here and in the succeeding figures thick means h/a =0.1; thin means hWa=O.O1. The shell material

is a generic steel with density p, = 7.7 times that of water, shear velocityv, = 3.24 km/s, and

longitudinal velocity v, = 5.95 km/s. The surrounding fluid is taken to be water with density p =

1000 kg/m3 and sound velocityc,, = 1.4825 km/s. The symmetric mode shows a good
comparison between exact and shell theory predictions, but the antisymmetric shell theory results
for this approximation compare poorly with the exact flexural results. Note that some symmetric
mode resonances were not found by our exact theory algorithm. In Fig. 3 we see thin spherical
steel shell dilatational (symmetric) and flexural (antisymmetric) mode resonances calculated by the
membrane model. Again there is good comparison between dilatational (symmetric) mode
resonances calculated by the two methods, except for the first couple of resonances. Only a few
exact flexural resonances were picked up by our algorithm. And again the shell theory flexural
(antisymmetric) mode resonances do not asymptote properly with increasing order. In
Fig. 4, we have thick spherical steel shell dilational (symmetric) and flexural (antisymmetric)
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mode resonances calculated by shell theory without fluid loading (vacuum). As in the
membrane model the shell theory and exact calculations compare well for the dilational
(symmetric) mode resonances. In contrast with the membrane model, however, the exact ana
shell theory calculations for this model show much better agreement for the flexural
(antisvmmetric) mode resonances. This model does not include fluid loading, but does
include the effects of rotary inertia. The vacuum shell theory flexural mode resonances do not
asymptote for large size parameter ka to the exact results, however. In Fig. 5, we see thin
spherical steel shell dilational (symmetric) and flexural (antisymmetric) mode resonances
calculated by shell theory without fluid loading (vacuum). As in the membrane model, the
shell theory and exact calculations compare well for the dilational (symmetric) mode
resonances except for the first couple of resonances. This vacuum model does not have fluid
loading, and has insufficient damping for the first two dilational (symmetric) mode
resonances. Again, the flexural (symmetric) mode resonances show roughly the correct
behavior, but it is not possible to tell what the asymptotic value of the phase velocity would
be for large size parameter on this scale. Next. in Fig. 6, we have a plot of thick spherical
steel shell dilational (symmetric) and flexural (antisymmetric) mode resonances calculated by
shell theory with fluid loading. As in the vacuum case, as well as for the membrane model.
the dilational (symmetric) mode resonances compare well for exact and shell theory methods.
The flexural (antisymmetric) mode resonances, as calculated by shell theory with fluid
loading, do not appear to have the correct asymptotic limit for large size parameter, although
they do exhibit roughly the correct behavior for lower values of ka. Finally, in Fig. 7, we see
thin spherical steel shell dilational (symmetric) and flexural (antisymmetric) mode resonances
calculated by shell theory with fluid loading. The exact and shell theory calculations agree
well for the dilational (symmetric) resonances and exhibit a marked improvement for the first
several shell theory symmetric mode resonances. This is due to the inclusion of fluid loading
in the model. The flexural (antisymmetric) mode resonances show the appropriate behavior
on this rather limited size parameter scale.

ACKNOWLEDG MENTS

We wish to thank the Office of Naval Research, the Office of Naval Technology,
and NOARL management, including Drs. Chin-Bing, Franchi, and Moseley. Dr. Dean is
at NOARL on an ONT Fellowship. This work was funded by NOARL Program Element
61153N, G. Car, Program Manager.

REFERENCES

[11 Junger, M. C., and Feit, D., Sound, Structures, and Their Interaction, 2nd ed., MIT
Press, Cambridge, Massachusetts, 1986.

[2] Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, 4th ed., Dover,
New York, 1944.



255

z

I

h

x

Fig. 1. Spherical shell showing coordinates used.



256

20

016 "

o Shell Theory Symmetric

Fi Shell Theory Antisymmetric
12 , Exact Antisymmetric

X Exact Symmetric

.• 8 01 0> 0Q 0X O 0 0 O 0OX Ox OX x O x OX ~<X 0(0 ) '

4

0

0 10 20 30 40 50 60 70 80

Size Parameter

Fig. 2. Thick spherical steel shell dilatational (symmetric) and flexural (antisymmetric) mode
resonances calculated by a membrane model. The symmetric mode shows a good comparison
between exact and shell theory predictions, but the antisymmetric shell theory results for this
approximation compare poorly with the exact flexural results. Some symmetric mode resonances
were not found by our exact theory algorithm.
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Fig. 3. Thin spherical steel shell dilatational (symmetric) and flexural (antisymmetric) mode
resonances calculated by a membrane model. Again there is good comparison between dilatational
(symmetric) mode resonances calculated by the two methods, except for the first couple of
resonances. Only a few exact flexural resonances were picked up by our algorithm. And again the
shell theory flexural (antisymmetric) mode resonances show the wrong behavior with increasing
order.
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Fig. 4. Thick spherical steel shell dilanonal (symmetric) and flexural (antisymmetric) mode
resonances calculated by shell theory without fluid loading (vacuum). As in the membrane
model, the shell theory and exact calculations compare well for the dilational (symmetric)
mode resoances. In contrast with the membrane model, however, the exact and shell theory
calculations for this model show much better agreement for the flexural (antisymmetric) mode
resonances. This model does not include fluid loading, but does include the effects of rotary
inertia. The vacuum shell theory flexural mode resonances do not asymptote for large size
parameter ka to the exact results, however.
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Fig. 5. Thin spherical steel shell dilatational (symmetric) and flexural (antisymmetric) mode
resonances calculated by shell theory without fluid loading (vacuum). As in the membrane model
the shell theory and exact calculations compare well for the dilatational (symmetric) mode
resonances except for the first couple of resonances. This vacuum model does not have fluid
loading, and has insufficient damping for the first two dilatational (symmetric) mode resonances.
Again, the flexural (symmetric) mode resonances show roughly the correct behavior, but it is not
possible to tell what the asymptotic value of the phase velocity would be for large size parameter on
this scale.
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Fig. 6. Thick spherical steel shell dilatational (symmetric) and flexural (anbsymmetric) mode
resonances calculated by shell theory with fluid loading. As in the vacuum case as well as for the
membrane model, the dilatational (symmetric) mode resonances compare well for exact and shell
theory methods. The flexural (antisymmetric) mode resonances, as calculated by shell theory with
fluid loading, do not appear to have the correct asymptotic limit for large size parameter, although
they do exhibit roughly the correct behavior for lower values of ka.
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Fig. 7. Thin spherical steel shell dilatational (symmetric) and flexural (antisymmetric) mode
resonances calculated by shell theory with fluid loading. The exact and shell theory calculations
agree well for the dilatational (symmetric) resonances and exhibit a marked improvement for the
first several shell theory symmetric mode resonances. This is due to the inclusion of fluid loading
in the model. The flexural (antisymmetric) mode resonances show the appropriate behavior on this
rather limited size parameter scale.
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